US 2006/0123412 Al

[0152] The manifest is used to create a prototype. The act
of installing a manifest and its described artifacts into a
system creates a prototype. A prototype is a “runable” or
“executable” manifestation of a software component. The
prototype is used to create an instance or an abstraction of
a software component. An instance or abstraction is a
“running” or “executing” manifestation of a prototype.

[0153] In the example structure 500, the right-to-left
arrows are to be read as “is described by.” So, for example,
the top tier 510 may read this way: OS abstraction 512is
described by” its system prototype 514, which “is described
by” its system manifest 516.

[0154] In this structure, the left-to-right arrows are to be
read as “is used to create.” So, for example, the second tier
520 may read this way: Application manifest 526“is used to
create” its application prototype 524, which “is used to
create” its application abstraction 516.

[0155] Similarly, the members of each tier have a defined
relationship between members in other tiers. Each member
of a progressively higher tier references or includes the like
members of lower tiers.

[0156] In the example structure 500, the top-to-bottom
arrows are to be read as “includes or “supervises.” So, for
example, the system manifest 516“includes” the application
manifest 526, which “includes” the process manifest 536,
which “includes” the load-source manifest 546.

[0157] Inthis structure, the bottom-to-top arrows are to be
read as “contained in” or “is supervised by.” So, for
example, the process prototype 534“is supervised by” the
application prototype 524, which “is supervised by” the
systems prototype 514.

[0158] In alternative implementations, the exemplary self-
describing artifact architecture has a different number of
tiers, different arrangements of tiers, and/or different
abstractions.

[0159] The systems manifest 516 describes the entire
system (i.e., all of the artifacts). It is a top-level manifest
pointing to manifests for each operating system component
and each application. Depending on scope, individual oper-
ating system components are described with application,
process, or load source manifests.

[0160] The application manifest 526 contains the process
manifest 536. As such, the application manifest describes or
specifies the processes that are created when the application
(represented by application abstraction 522) runs. Applica-
tion manifests may also identify the interprocess communi-
cation interfaces exposed or required by the application and
describe the bindings between interprocess communication
interfaces of processes within the application.

[0161] The process manifest 526 contains load module
manifests describing or specifying the load modules
included in the process (represented by the process abstrac-
tion 532). Process manifests may identify the interprocess
communication interfaces exposed or required by each pro-
cess and describe the bindings between code and data
interfaces on load modules.

[0162] The load source manifest 536 describes or specifies
the persisted binary file containing the executable code of
the load module and identifies any further load modules

Jun. &, 2006

required by this load module. Load source manifests identify
the code and data interfaces exposed or required by the load
module.

[0163] An embodiment may support several types of
manifests including manifests for running processes and for
process prototypes, manifests for running applications and
for application prototypes, manifests for running operating
system components and for their prototypes, manifests for
hardware devices, and one or more manifests for the system
as a whole. In such an embodiment, the differing manifests
may share and reuse the same structural elements.

Application Abstraction

[0164] Rather then just being part of a user-centric model,
the concept of an application program is actually part of this
the exemplary self-describing artifact architecture 100. In
particular, the OS 112 (or portions thereof) inherently rec-
ognize the concept of an “application abstraction.” As
described by its associated manifest, an application abstrac-
tion is descriptively and necessarily linked to specific low-
level abstractions (such as active processes and their load
sources) and specific high-level abstractions (such as the
operating system).

[0165] When a user, either directly or indirectly, runs a
program, the OS 112 creates an instance of an application
abstraction (such as application abstraction 522) from an
application prototype (such as application prototype 524).
Creating an instance of an application includes creating new
instances of processes described by their process prototypes.

[0166] The static description of the application is embod-
ied in one or more application manifests (such as application
manifest 526). The OS 112 maintains “dynamic” metadata
that links processes with applications, processes with pro-
cess prototypes, and applications with application proto-
types. The OS 112 also maintains additional dynamic meta-
data that links process prototypes and application prototypes
with their respective manifests.

[0167] The application abstraction is embodied in a
dynamic object. Other software components (such as part of
the OS) can communicate with the dynamic application
abstraction objects to determine which applications are
running, to determine which processes belong to an appli-
cation, and to retrieve other metadata, such as manifests, that
are also available. For example, given the identity of a
process, a program can ask the OS for the identity of the
application to which it belongs; given the identity of an
application, a program can ask the operating system for the
identity of its application prototype; etc.

Methodological Implementation of Exemplary Application
Abstraction Management

[0168] FIG. 6 shows a method 600 performed by the OS
112 or portions thereof for the purpose of creating and
managing application abstractions. This methodological
implementation may be performed in software, hardware, or
a combination thereof. For ease of understanding, the
method is delineated as separate steps represented as inde-
pendent blocks in FIG. 6; however, these separately delin-
eated steps should not be construed as necessarily order
dependent in their performance. Additionally, for discussion
purposes, the method 600 is described with reference to
FIG. 1.



